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Interplay of disorder and nonlinearity 

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 

Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – 

Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – 

Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)] 

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]  



The Klein – Gordon (KG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The discrete nonlinear Schrödinger (DNLS) equation 
We also consider the system: 
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Conserved quantities: The energy and the norm                      of the wave packet. 
2
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Linear case (neglecting the term ul
4/4)  

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem:  

           λAl = εlAl - (Al+1 + Al-1) with 
2

l lλ = Wω -W - 2,    ε = W(ε - 1)



Distribution characterization 

We consider normalized energy distributions in normal mode (NM) space  

of the νth NM (KG) or norm distributions (DNLS). 

, where Aν is the amplitude 
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measures the number of stronger excited modes in zν.  

Single mode P=1. Equipartition of energy P=N.  



Scales 
Linear case:                             , width of the squared frequency spectrum: 

 

 

 

 

 

Average spacing of squared eigenfrequencies of NMs within the range of a  
 

localization volume:  

 

Nonlinearity induced squared frequency shift of a single site oscillator 

 

 
 

 

The relation of the two scales                  with the nonlinear 
frequency shift δl determines the packet evolution. 
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Different Dynamical Regimes 
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) -  Bodyfelt et al., PRE (2011)]  

Δ: width of the frequency spectrum, d: average spacing of interacting modes,  

δ: nonlinear frequency shift.  
 

Weak Chaos Regime: δ<d,     m2~t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)]. 
 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 



Single site excitations 

No strong chaos regime 

 

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations: 

 

α=0.33±0.05 (KG) 

α=0.33±0.02 (DLNS) 

 

 

Flach et al., PRL (2009)  

S. et al., PRE (2009) 

DNLS W=4, β= 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

slope 1/6 slope 1/6 



KG: Different spreading regimes 



Crossover from strong to weak chaos 

We consider compact initial wave packets of width L=V [Laptyeva et al., 

EPL (2010) -  Bodyfelt et al., PRE (2011)]. 

Time evolution 

DNLS KG 



Crossover from strong to weak chaos 

(block excitations) 

W=4 

 

Average over 1000 realizations! 
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α=1/3 

α=1/2 

DNLS β= 0.04, 0.72, 3.6 KG E= 0.01, 0.2, 0.75 

Laptyeva et al., EPL (2010)  

Bodyfelt et al., PRE (2011) 



Lyapunov Exponents (LEs) 

Roughly speaking, the Lyapunov exponents of a given 

orbit characterize the mean exponential rate of divergence 

of trajectories surrounding it.  

Consider an orbit in the 2N-dimensional phase space with 

initial condition x(0) and an initial deviation vector from it 

v(0). Then the mean exponential rate of divergence is:  


1

t

v(t)1
mLCE = λ = lim ln

t v(0)

λ1=0  Regular motion  (t-1) 

λ10  Chaotic motion 



KG: LEs for single site excitations (E=0.4) 



KG: Weak Chaos (E=0.4) 



KG: Weak Chaos 

Individual runs 

Linear case 

E=0.4, W=4 

Average over 50 realizations 

 

Single site excitation E=0.4, 

W=4 

Block excitation (21 sites) 

E=0.21, W=4 

Block excitation (37 sites) 

E=0.37, W=3 

 

 

S. et al. PRL (2013) 
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slope -1 

slope -1 

αL = -1/4 



Deviation Vector Distributions (DVDs) 

Deviation vector:   

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t))  
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DVD: 



Deviation Vector Distributions (DVDs) 

Individual run 

E=0.4, W=4 

 

Chaotic hot spots  

meander through the 

system, supporting a 

homogeneity of chaos 

inside the wave packet. 



Integration scheme 

Consider an N degree of freedom autonomous 

Hamiltonian system having a Hamiltonian function of the 

form: 
 

H(q1,q2,…,qN, p1,p2,…,pN) 

The time evolution of an orbit (trajectory) with initial 

condition 

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0)) 

positions momenta 

is governed by the Hamilton’s equations of motion 
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Autonomous Hamiltonian systems 

Hamilton equations of motion: 

Variational equations: 

Let us consider an N degree of freedom 
autonomous Hamiltonian systems of the 

form:  

As an example, we consider the Hénon-Heiles system: 



Symplectic Integrators (SIs) 
Formally the solution of the Hamilton equations of motion can be written 
as: 

where     is the full coordinate vector and LH the Poisson operator: X
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= H, X = L X  X(t) = L X = e X

dt n!

If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           by HτL

e

for appropriate values of constants ci, di. This is an integrator of order n. 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.  

OH A B i A i B

j
τL τ(L +L ) c τL d τL n+1

i=1

e = e e e + (τ )



Symplectic Integrator SABA2C 
The operator        can be approximated by the symplectic integrator 

[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]: 

HL
e


1 A 1 B 2 A 1 B 1 Ac L d L c L d L c L

2SABA = e  e  e  e  e
    

with .1 2 1

1 3 3 1
c = - ,  c = ,  d =

2 6 3 2

The integrator has only small positive steps and its error is of order 2. 

In the case where A is quadratic in the momenta and B depends only on 

the positions the method can be improved by introducing a corrector C, 

having a small negative step: 
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Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its 

error is of order 4. 
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Tangent Map (TM) Method 

We apply the SABAC2 integrator scheme to the Hénon-Heiles system 

(with ε=1) by using the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 

 

Use symplectic integration schemes for the whole set of equations (S. & 

Gerlach, PRE (2010)  

We approximate the dynamics by the act of Hamiltonians A, B and C, 

which correspond to the symplectic maps: 



Tangent Map (TM) Method 

The system of the Hamilton’s equations of motion and the variational equations 

is split into two integrable systems which correspond to Hamiltonians A and B.  

Let 



Tangent Map (TM) Method 
Any symplectic integration scheme used for solving the Hamilton equations 

of motion, which involves the act of Hamiltonians A and B, can be extended 

in order to integrate simultaneously the variational equations [S. & Gerlach, 

PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011)  –  Gerlach et al., 

IJBC (2012)]. 



The KG model 
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 

the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 
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The DNLS model 
A 2nd order SABA Symplectic Integrator with 5 steps, combined with 

approximate solution for the B part (Fourier Transform): SIFT2  
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The DNLS model 
Symplectic Integrators produced by Successive Splits (SS)  
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Using the SABA2 integrator we get a 2nd order integrator with 13 

steps, SS2: 
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Three part split symplectic integrators 

for the DNLS model 

Three part split symplectic integrator of order 2, with 5 

steps: ABC2 

A B B A
C

τ τ τ τ
L L L L

τL2 2 2 2 2ABC =  e  e  e  e  e

This low order integrator has already been used by e.g. Chambers, MNRAS 

(1999) – Goździewski et al., MNRAS (2008). 
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Composition Methods: 4th order SIs 

In this way, starting with the 2nd order integrators SS2, SIFT2 and ABC2 

we construct the 4th order integrators: 

SS4 with 37 steps              SIFT4 with 13 steps             ABC4
[Y]with 13 steps 

Starting from any 2nd order symplectic integrator S2nd, we can construct a 

4th order integrator S4th using the composition method proposed by 

Yoshida [Phys. Lett. A (1990)]: 
1/3

4th 2nd 2nd 2nd

1 0 1 0 11/3 1/3

2 1
S (τ) = S (x τ)×S (x τ)×S (x τ),      x = - ,       x =

2- 2 2- 2

Composition method proposed by Suzuki [Phys. Lett. A (1990)]: 

4th 2nd 2nd 2nd 2nd 2nd

2 2 2 2 2

1/3

2 21/3 1/3

S (τ) = S (p τ)×S (p τ)×S ((1- 4p )τ)×S (p τ)×S (p τ)

1 4
                            p = ,       1- 4p = -

4 - 4 4 - 4
Starting with the 2nd order integrators ABC2 we construct the 4th order 

integrator: ABC4
[S] with 21 steps. 



More 4th order SIs 

Approximating the solution of the B part by a Fourier 

Transform we construct the 4th order integrators: 

SIFT4
864 with 43 steps                     SIFT4

1064 with 49 steps 

We construct few more integration schemes by considering 

the 4th order symplectic integrators ABA864, ABA1064, 

ABAH864 and ABAH1064 introduced by Blanes et al., Appl. 

Num. Math. (2013) and Farrés et al.,  Cel. Mech. Dyn. Astr. 

(2013). 

Using successive splits for the B part and implementing the 

SABA2 integrator for its integartion, we construct the 4th 

order integrators: 

SS4
864 with 49 steps                     SS4

1064 with 55 steps 



4th order integrators: Numerical results (I) 

SIFT4 τ=0.125 

SIFT2 τ=0.05 

ABC4
[S] τ=0.1 

SS4 τ=0.1 

ABC4
[Y] τ=0.05 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 

Tc: CPU time (sec) 

 

S. et al., Phys. Lett. A 

(2014) 



4th order integrators: Numerical results (II) 

SIFT4
1064 τ=0.25 

ABC4
[Y] τ=0.05 

SIFT4
864 τ=0.25 

SS4
1064 τ=0.25 

SS4
864 τ=0.25 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 

Tc: CPU time (sec) 

 

S. et al., Phys. Lett. A 

(2014) 



Summary (I) 
• We presented three different dynamical behaviors for wave packet 

spreading in 1d nonlinear disordered lattices: 

 Weak Chaos Regime: δ<d,     m2~t1/3 

 Intermediate Strong Chaos Regime: d<δ<Δ,     m2~t1/2    m2~t1/3  

 Selftrapping Regime: δ>Δ  

• Generality of results:  

 Two different models: KD and DNLS,  

 Predictions made for DNLS are verified for both models. 

• Lyapunov exponent computations show that:  

 Chaos not only exists, but also persists. 

 Slowing down of chaos does not cross over to regular dynamics. 

 Chaotic hot spots  meander through the system, supporting a homogeneity of 

chaos inside the wave packet. 

• Our results suggest that Anderson localization is eventually destroyed by 

nonlinearity, since spreading does not show any sign of slowing down. 



• We presented several efficient integration methods suitable for the 
integration of the DNLS model, which are based on symplectic 
integration techniques. 

• The construction of symplectic schemes based on 3 part split of the 
Hamiltonian was emphasized (ABC methods).  

• Algorithms based on the integration of the B part of Hamiltonian 

via Fourier transforms, i.e. methods SIFT2, SIFT4, SIFT4
864 and 

SIFT4
1064 succeeded in keeping the relative norm error Sr very low. 

Drawback: they require the number of lattice sites to be 2k, k∗. 

• We hope that our results will initiate future research both for the 
theoretical development of new, improved 3 part split integrators, as 
well as for their applications to different dynamical systems. 

Summary (II) 
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